微生物资源利用与加工研究团队现有研究成员5人,其中教授1人、副教授2人。本团队主要基于微生物技术原理与方法,将微生物资源应用于农业病害防治、农产品精深加工、传统发酵食品大生产、动物养殖与医疗行业并开展系统性研究,实现农业和食品业绿色健康发展。研究方向:(1)微生物菌种资源研究及应用;(2)微生物药物和微生物合成生物学;(3)传统发酵食品微生物与风味化学。
团队成员主持承担包括国家自然科学基金、中国博士后科学基金、湖北省高等学校优秀中青年科技创新团队计划项目、湖北省重点研发计划、湖北省自然科学基金等项目,在Natural Product Reports、Food Research International、Food Chemistry、Food Bioscience、International Journal of Biological Macromolecules、LWT-Food Science and Technology、Frontiers in Microbiology等国内外期刊发表高水平SCI论文60余篇,授权发明/实用新型专利10余项,获湖北省科技奖一等奖和二等奖各2项。
二、团队成员
胡远亮,博士、教授、湖北师范大学生命科学学院院长、黄石市有突出贡献专家。主要从事微生物学基础和应用研究工作,将微生物技术原理与方法,应用于农业种植,动物养殖,食品和医疗等行业,研发益生菌制剂等微生物产品。近5年来,主持国家自然科学基金、中国博士后科学基金、湖北省重点研发计划、湖北省自然科学基金、科技人员服务企业专项行动湖北专项、湖北省高等学校科技创新团队项目20余项。先后在Food Res Int、Front Microbiol、J Environ Manage等发表SCI收录论文30余篇,授权发明专利5项,获黄石市创新争先优秀个人、黄石市东楚英才、黄石市服务产业专才计划优秀专家,湖北省科技进步奖一等奖(排第2)和二等奖(排第6)等。
冯艳丽,博士,副教授/硕士生导师,研究领域为红曲发酵调控,主要包括(1)功能性红曲的发酵调控;(2)红曲菌碳源/氮源代谢调控;(3)红曲色素定向调控。
余翔,博士,副教授,硕士生导师,美国农业部(USDA-ARS)访问学者,研究领域:(1)应用微生物学;(2)发酵肉制品加工及质量控制。
董卫卫,博士,讲师,硕士生导师。研究领域为:(1)传统发酵食品发酵过程中的微生物生态学和风味物质解析;(2)群感效应和群感淬灭。
刘军,博士,讲师,硕士生导师。研究领域为:(1)益生菌活性及功能性研究;(2)基于微生物的发酵肉制品品质调控研究。
三、研究内容
团队重点研究集中在以下几个方面:
(1)生物饲料发酵关键技术研发与产业化
在国家级、省级等项目支持下,针对生物饲料发酵关键技术开展大量研究工作,选育了丁酸梭菌、酿酒酵母、布拉氏酵母等生物饲料应用菌株;创新饲用微生物高密度发酵和制剂化工艺,解决了厌氧微生物生产菌数低、制剂过程中菌体易死亡的问题;研发非常规饲料原料白酒糟生物转化技术,建立酵母固态发酵和自溶工艺。
(2)安全高附加值红曲产品的研究与应用
功能性红曲是红曲菌(Monascus spp.)发酵淀粉质原料如大米所得的产品,含有调节血脂成分莫纳可林K(monacolin K,MK)及其同系物。该成果以可高产MK、不产桔霉素的红曲菌为菌株,可获取MK含量达3.5%的功能性红曲。还能以山药、燕麦等为基质,生产新型功能红曲产品。
(3)发酵工艺调控微生物群落与风味演替机制
研究比较了传统工艺和机械化新工艺对对白酒生产中微生物群落和风味的影响。两种工艺的微生物群落存在差异,在发酵高峰,新工艺酵母菌和细菌数量显著高于传统工艺。组学分析显示,发酵过程中有5种核心微生物,库德毕赤酵母比酿酒酵母更活跃。除了酿酒酵母外,其他微生物包括非酵母菌酵母、霉菌和细菌也参与了高级醇的形成。
(4)红曲色素或莫纳可林K的“偏向性”调控
红曲色素(Monascus pigments, MPs)和莫纳可林K(Monacolin K, MK)是红曲菌(Monascus spp.)的主要次级代谢产物。其中,红曲色素主要包括红、橙、黄3种颜色。该成果以甘油/大豆分离蛋白等作为主要碳源/氮源,解析其“偏向性”调控MPs或MK产生的关键因素及作用机制。为后续采用碳源/氮源“偏向性”调控红曲菌产MK或某种颜色MPs提供借鉴。
四、承担科研项目
(1)湖北省自然科学基金(青年基金):乳酸化修饰介导的低盐风干鱼肌原纤维蛋白热凝胶形成机制研究,2024.01-2025.12
(2)湖北省高等学校优秀中青年科技创新团队计划项目:农产品资源开发与精深加工,2022.07-2026.07
(3)湖北省重点研发计划:炎症性肠病活体治疗药物丁酸梭菌的研发与应用,2022.07-2024.07
(4)湖北省自然科学基金联合基金:碳源/氮源“偏向性”调控红曲菌产色素或Monacolin K的机制研究,2022.01-2024.12
(5)中国博士后科学基金会(面上项目): N-酰基高丝氨酸内酯酶高效快速筛选质粒的构建和定向进化,2022.01-2023.07
(6)湖北省教育厅科研项目(重点项目):功能性大豆红曲替代红曲米对红腐乳品质的影响研究,2019.01-2021.12
(7)国家自然科学基金:鄂西高山大白菜根肿病发生微生态机制及Streptomyces alfalfae XY25T防治研究, 2017.01-2019.12
(8)湖北省自然科学基金:甘油影响红曲菌产色素的“角色”探究2017.01-2018.12
(9)中国博士后科学基金:链霉菌对设施蔬菜土壤连作障碍改良机制研究,2016.01-2017.12
(10)非生物胁迫下壳寡糖对水稻幼苗生长及抗逆性影响研究,教育厅中青年人才项目2016.01-2017.12
(11)湖北省自然科学基金:日粮中添加凝结芽孢杆菌对断奶仔猪生长及肠道菌群的影响研究,2015.01-2016.12
(12)湖北省教育厅科研项目:丛毛红曲菌(Monascus pilosus)MS-1发酵生物柴油副产物粗甘油产monacolin K和红曲色素,2015.01-2016.12
五、学术论文
[1] Dong W, Zhou R, Li X, et al. Effect of simplified inoculum agent on performance and microbiome during cow manure-composting at industrial-scale[J]. BIORESOURCE TECHNOLOGY, 2024,393.
[2] Hu Z, Liu J, Xu H, et al. Exploring the mechanism of Lycium barbarum fruit cell wall polysaccharide remodeling reveals potential pectin accumulation contributors[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024,258.
[3] Liu J, Liu D, Hu Z, et al. TMT quantitative proteomics analysis reveals molecular mechanism of ferroptosis during beef refrigeration[J]. Food Chemistry, 2024,435:137596.
[4] Shen H, Wang T, Dong W, et al. Metagenome-assembled genome reveals species and functional composition of Jianghan chicken gut microbiota and isolation of Pediococcus acidilactic with probiotic properties[J]. MICROBIOME, 2024,12(1).
[5] Dong W, Yu X, Wang L, et al. Unveiling the microbiota of sauce-flavor Daqu and its relationships with flavors and color during maturation[J]. FRONTIERS IN MICROBIOLOGY, 2024,15.
[6] Zhang Y, Ning D, Wu L, et al. Experimental warming leads to convergent succession of grassland archaeal community[J]. NATURE CLIMATE CHANGE, 2023,13(6):561.
[7] Liu J, Hu Z, Ma Q, et al. Ferritin-dependent cellular autophagy pathway promotes ferroptosis in beef during cold storage[J]. Food Chemistry, 2023,412:135550.
[8] Liu J, Hu Z, Liu D, et al. Glutathione metabolism-mediated ferroptosis reduces water-holding capacity in beef during cold storage[J]. Food Chemistry, 2023,398:133903.
[9] Liu J, Pan C, Yue H, et al. Proteomic and metabolomic analysis of ageing beef exudate to determine that iron metabolism enhances muscle protein and lipid oxidation[J]. Food Chemistry: X, 2023,20:101038.
[10] Liu J, Hu Z, Ma Q, et al. Reduced water-holding capacity of beef during refrigeration is associated within creased heme oxygenase 1 expression, oxidative stress and ferroptosis[J]. Meat Science, 2023,202:109202.
[11] Qin X, Xie B, Zong X, et al. Selective production, relationship and controversy between Monascus pigments and citrinin[J]. FOOD BIOSCIENCE, 2023,56.
[12] Dong W, Fan Z, Li P, et al. Optimizing the scale-up production of fermented astragalus and its benefits to the performance and egg quality of laying hens[J]. FRONTIERS IN MICROBIOLOGY, 2023,14.
[13] Liu J, Pan C, Yue H, et al. Proteomic and metabolomic analysis of ageing beef exudate to determine that iron metabolism enhances muscle protein and lipid oxidation[J]. FOOD CHEMISTRY-X, 2023,20.
[14] Li X, Tan G, Chen P, et al. Uncovering acid resistance genes in lactic acid bacteria and impact of non-viable bacteria on bacterial community during Chinese strong-flavor baijiu fermentation[J]. FOOD RESEARCH INTERNATIONAL, 2023,167.
[15] Dong W, Zeng Y, Cui Y, et al. Unraveling the composition and succession of microbial community and its relationship to flavor substances during Xin-flavor baijiu brewing (Retraction of Vol 372, art no 109679, 2022)[J]. INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2023,387.
[16] Shi X, Zhao S, Chen S, et al. Tetramethylpyrazine in Chinese baijiu: Presence, analysis, formation, and regulation[J]. FRONTIERS IN NUTRITION, 2022,9.
[17] Liu J, Liu D, Zheng A, et al. Haem-mediated protein oxidation affects water-holding capacity of beef during refrigerated storage[J]. Food Chemistry: X, 2022,14:100304.
[18] Liu J, Hu Z, Zheng A, et al. Identification of exudate metabolites associated with quality in beef during refrigeration[J]. LWT, 2022,172:114241.
[19] Liu J, Ma Q, Liu D, et al. Identification of the cell wall proteins associated with the softening of Lycium barbarum L. fruit by using iTRAQ technology[J]. Food chemistry. Molecular sciences, 2022,4:100110.
[20] Liu J, Zhang W, Liu D, et al. Physicochemical properties of a new structural lipid from the enzymatical incorporation of flaxseed oil into mutton tallow[J]. HELIYON, 2022,8(6).
[21] Liu J, Liu D, Wu X, et al. TMT Quantitative Proteomics Analysis Reveals the Effects of Transport Stress on Iron Metabolism in the Liver of Chicken[J]. Animals, 2022,12(1).
[22] Shi J, Qin X, Zhao Y, et al. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination[J]. PROCESS BIOCHEMISTRY, 2022,117:19-29.
[23] Dong W, Dong S, Li Y, et al. Comprehensive utilization of palm kernel cake for producing mannose and manno-oligosaccharide mixture and yeast culture[J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2022,106(3):1045-1056.
[24] Dong W, Shen H, Liu H, et al. Unraveling the microbial community and succession during zha-chili fermentation and their relationships with flavor formation[J]. FOOD RESEARCH INTERNATIONAL, 2022,157.
[25] Yin Y, Han X, Lu Y, et al. Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology[J]. FERMENTATION-BASEL, 2021,7(2).
[26] Hu Y, Qiu L, Zhang Z, et al. Control of Streptomyces alfalfae XY25T Over Clubroot Disease and Its Effect on Rhizosphere Microbial Community in Chinese Cabbage Field Trials[J]. FRONTIERS IN MICROBIOLOGY, 2021,12.
[27] Yin Y, Han X, Lu Y, et al. Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology[J]. FERMENTATION-BASEL, 2021,7(2).
[28] Hu Y, Lei X, Zhang X, et al. Characteristics of the Microbial Community in the Production of Chinese Rice-Flavor Baijiu and Comparisons With the Microflora of Other Flavors of Baijiu[J]. FRONTIERS IN MICROBIOLOGY, 2021,12.
[29] Hu Y, Wang L, Zhang Z, et al. Microbial community changes during the mechanized production of light aroma Xiaoqu baijiu[J]. BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021,35(1):487-495.
[30] Hu Y, Yang Q, Chen D, et al. Study on microbial communities and higher alcohol formations in the fermentation of Chinese Xiaoqu Baijiu produced by traditional and new mechanical technologies[J]. FOOD RESEARCH INTERNATIONAL, 2021,140.
[31] Liu J, Zhao Y, Xu H, et al. Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum L.[J]. INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2021,56(6):3044-3054.
[32] Shi J, Zhao W, Lu J, et al. Insight into Monascus pigments production promoted by glycerol based on physiological and transcriptome analyses[J]. PROCESS BIOCHEMISTRY, 2021,102:141-149.
[33] Liu H, Tan G, Chen Q, et al. Detection of viable and total fungal community in zaopei of Chinese strong-flavor baijiu using PMA combined with qPCR and HTS based on ITS2 region[J]. BMC MICROBIOLOGY, 2021,21(1).
[34] Dong W, Yang Q, Liao Y, et al. Characterisation and comparison of the microflora of traditional and pure culture xiaoqu during the baijiu liquor brewing process[J]. JOURNAL OF THE INSTITUTE OF BREWING, 2020,126(2):213-220.
[35] Tan G, Hu Y, Huang Y, et al. Analysis of bacterial communities in pit mud from Zhijiang Baijiu distillery using denaturing gradient gel electrophoresis and high-throughput sequencing[J]. JOURNAL OF THE INSTITUTE OF BREWING, 2020,126(1):90-97.
[36] Yu X, Feng Y, Bowker B, et al. Expressible fluid measurements of broiler breast meat affected by emerging muscle abnormalities[J]. LWT-FOOD SCIENCE AND TECHNOLOGY, 2020,133.
[37] Feng Y*, Yu X. Perspectives on functional red mold rice: functional ingredients, production, and application[J]. Front. Microbiol., 2020, 11:606959.
[38] Tan G, Hu Y, Huang Y, et al. Analysis of bacterial communities in pit mud from Zhijiang Baijiu distillery using denaturing gradient gel electrophoresis and high-throughput sequencing[J]. JOURNAL OF THE INSTITUTE OF BREWING, 2020,126(1):90-97.
[39] Dong W, Yang Q, Liao Y, et al. Characterisation and comparison of the microflora of traditional and pure culture xiaoqu during the baijiu liquor brewing process[J]. JOURNAL OF THE INSTITUTE OF BREWING, 2020,126(2):213-220.
[40] Dong W, Cai Y, Xu Z, et al. Heterologous expression of AHL lactonase AiiK by Lactobacillus casei MCJΔ1 with great quorum quenching ability against Aeromonas hydrophila AH-1 and AH-4[J]. MICROBIAL CELL FACTORIES, 2020,19(1).
[41] Dun Y, Li Y, Xu J, et al. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019,123:420-426.
[42] Huang M, Cheng J, Chen P, et al. Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate[J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019,237:147-154.
[43] Hu Y, Yu D, Wang Z, et al. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food[J]. SCIENTIFIC REPORTS, 2019,9.
[44] Chen W, Feng Y, Molnar I, et al. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments[J]. NATURAL PRODUCT REPORTS, 2019,36(4):561-572.
[45] Dong W, Kong D, Zhang Q, et al. Chitinophaga salinisoli sp nov., isolated from saline soil[J]. ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2018,111(2):265-273.
[46] Dong W, Zhu J, Guo X, et al. Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1[J]. SCIENTIFIC REPORTS, 2018,8.
[47] Zhou S, Song J, Dong W, et al. Nicosulfuron Biodegradation by a Novel Cold-Adapted Strain Oceanisphaera psychrotolerans LAM-WHM-ZC[J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2017,65(47):10243-10249.
[48] Hu Y, Dun Y, Li S, et al. Changes in microbial community during fermentation of high-temperature Daqu used in the production of Chinese 'Baiyunbian' liquor[J]. JOURNAL OF THE INSTITUTE OF BREWING, 2017,123(4):594-599.
[49] Zhu J, Wang H, Zhang Q, et al. Arenimonas alkanexedens sp nov., isolated from a frozen soil sample[J]. ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2017,110(8):1027-1034.
[50] Ma K, Chen X, Guo X, et al. Bacillus vini sp nov isolated from alcohol fermentation pit mud[J]. ARCHIVES OF MICROBIOLOGY, 2016,198(6):559-564.
[51] Zhou S, Guo X, Wang H, et al. Chromobacterium rhizoryzae sp nov., isolated from rice roots[J]. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2016,66:3890-3896.
[52] Feng Y, Chen W, Chen F. A Monascus pilosus MS-1 strain with high-yield monacolin K but no citrinin[J]. FOOD SCIENCE AND BIOTECHNOLOGY, 2016,25(4):1115-1122.
[53] Chen W, He Y, Zhou Y, et al. Edible Filamentous Fungi from the Species Monascus: Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics[J]. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2015,14(5):555-567.
[54] Feng Y, Shao Y, Zhou Y, et al. Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1[J]. EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2015,240(3):635-643.
[55] Feng Y, Shao Y, Zhou Y, Chen F*.Production and optimization of monacolin K by citrinin-free Monascus pilosus MS-1 in solid-state fermentation using non-glutinous rice and soybean flours as substrate [J].Eur Food Res Technol, 2014(4), 239:629-636.
[56] Feng Y, Shao Y, Zhou Y, Chen F*. Monacolin K production by citrinin-free Monascus pilosus MS-1 and fermentation process monitoring [J]. Eng Life Sci., 2014, 14(5)538-545.
[57] Feng Y, Shao Y, Chen F*. Monascus pigments [J]. Appl. Microbiol. Biotechnol., 2012, 96(6):1421-144.
六、发明专利
(1)冯艳丽,余翔,胡远亮.一种铁皮石斛汁的提取装置[P].湖北省: CN202320893476.7,2023-07-07.
(3)余翔,吴晓光,张梦佳,冯艳丽,梁艳,一种茶枯多糖提取工艺,发明专利号:ZL 2016 1 0164602.X